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E3.20
AN IMPROVED TOEPLITZ APPROXIMATION METHOD'

K. S. Arun Bhaskar D. Rao
Electrical and Computer Engineering Applied Mechanics and Engineering Science

Coordinated Science Laboratory System Science Group
Univ. of Illinois at Urbana-Champaign Univ. of California at San Diego

Urbana. IL-61801 La Jolla. CA-92093

ABSTRACT y(t) = L a.y(t-k)

In this paper, we suggest a modification of the Toe- k=1

plltz approximation method for estimating frequencies of whose parameters may be reliably estimated by the
multiple sinusoids from covariance measurements. The method of Tufts and Kumaresan [4]. The roots of the
method constructs a state-feedback matrix following a polynomial formed from these parameters are ideally
low-rank approximation of the Toeplitz covariance matrix expected to be on the unit circle in the complex plane. and
via singular value decomposition. Ideally, the eigenvalues the angles that they make with the real axis should equal
of this state-feedback matrix will be on the unit circle in the sinusoid frequencies.
the complex plane, and the angles that they make with the
real axis will be equal to the unknown sinusoid frequen- 2. STATE-SPACE REPRESENTATION
cies. The modification proposed here exploits this prior It turns out that Ihe sinusoidal model is a very spe-knowledge of the modulus of the elgenvalues, and guaran-
tees that even in the presence of noise, the eigenvalues of cial case of the general linear rational model, and that just
teestiateven inatefeecmaiwile ofoi the ei lunit of as there are alternate parameterizations of linear systems,
the estimated state-feedback matrix will lie on the unit there also are alternate parameter sets for the sinusoidal
circle. model as well. Just as there is a state-space representation

for every realization of a linear, rational system, there is

1. INTRODUCTION also a state-space representation for every realization of
the sinusoidal model. The slate-space representation of the

The problem of retrieving multiple sinusoids (with special model for sinusoidal signals (frequencies: ca,.
frequencies close to each other) from perturbed time-series 1-l,2 ..... n) is:
or covariance information is of special interest in a vast
range of signal-processing applications. Very often the x(k + I Fx(k)

covariance sequence may have to e estimated from time- y(k) = hx(k)

series data, as in Doppler processing in radar. It is not where the order of the model p is twice the number of
uncommon, however, to encounter applications in which sinusoids, and the eigenvalues of F are of unit magnitude
the (time-series) data are not measurable while the covari- and equal es, i-l.2 .... n. The sinusoidal signal y(t) is the
ance information is directly available. Such situations model's zero-input response to some non-zero initial condi-
arise in astronomical star bearing estimation, interference tion x(O). In fact, we have
spectroscopy, and some sensor array applications. "y(t) = Wx(O). t > 0.

In recent years, there has been a great deal of interest
in model-based sinusoid retrieval. Models convert the and the covariance r(m) of the sinusoidal signal satisfies

non-linear problem of estimating the sinusoid frequencies r(m) = hFmph '  m > 0 (1
into a simpler problem of estimating the parameters of a
linear model [1]. The second step in all model-based where P is the state-covariance matrix, and the ,uperscript

methods is the extraction of the desired information (the t denotes the Hermitian transpose.

frequencies) from the estimated model parameters [2]. 1 he linear prediction model is a canonical realilalion
Both steps are important for the overall success of a of the above, with
model-based method. Ill-conditioning at either step can x(t)= [y(t-I) y(t-2). ( t-p)P.
adversely effect the overall performance of the method
and should be avoided. The reliability of the first step
depends on the estimation procedure, and that of the at a2  ap
second step on the sensitivity of the desir-d information to 1 0 . . 0
the model parameters [3]. A poipular model for the 0 I • • 0
sinusoid retrieval problem is the linear prediction model F .......... h a a2  ' ap1.
first used by Prony in 1881. 

'Thii work was partially iponsored by SDDO/Mi, and managed h%. 1hr t S 0 0 . . 0
Army Research Office under coniraci DA.L03 ny, 8 k (0107.
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Another canonical realization which avoids the second step diLlerent state-spdce iealh/dtaon of the order-p sinusoidal
completely is iiiodel as

F=diag(e"'). h=(l,l. 1). F= E)L2 (F2F) - . (5)

However, the first step of estimating the model parameters Here, the superscript L (similarly R) denotes any left-
becomes difficult for this realization. This non-uniqueness inverse (or right-inverse). They exist because the matrices
of the parameter triple (F.x(O),h) that characterizes the under consideration have full rank. The frequencies of the
realization, allows one to choose a realization that iiakes sinusoids may then be found as the angles of the eigen-
both steps of the model-based method reliable. The state values of the F matrix.
space parameters can be estimated from covariance data by Theoretically, the algorithm should work for any
using the factorizations derived below, choice of Q. For instance, the choice 0 = E/Vf', where Vf

Using Eq. (1) for the covariance lags, and noting that denotes the matrix formec from the first p rows of V. will
the state covariance matrix P satistes P = FPF1. it can be lead to the canonical reali/ation with the linear prediction
shown that parameters. The so-called balanced choice Q = I is the pre-

r(-m) = hF-mPh'. (2) ferred choice for reducing the sensitivity of the sinusoid
frequencies to the model parameters.

Using Eqs. ( ) and (2), the Toeplitz covariance matrix It is well known in the numerical analysis literature
r(O) r(-l) r(-2) r(-n) that the cigenvalues of a normal matrix are least sensitive
r(l) r(O) r(-l) r(-n+l) to perturbations in the matrix entries [b]. Recall that F is
r(2) r(I) r(O) r(-n+2) a ndrmial matrix if it satisfies FFt = FF. Since the state-

R -- feedback matrix of the sinusoidal model has eigenvalimo of
unit modulus, this amiounts to requiring that thc matrix be

.. . unitary. Note that for every realization of the sinusoidal
(n) r(n-I) r(n-2) . r(O) model, F has eigenvalues on the unit circle, which is a

can be factorized as shown below, necessary condition for it to be unitary. It is not a
sufficient condition however, and not all realizations of the

h sinusoidal model have unitary state-feedback matrices;
hF but it turns out that

R = Ph' F-lh' F- 2Ph " F... h'h Theorem 1: The F matrix obtained from any symmetric
factorization (E = r') of the square covariance matrix R is
unitary.

Proof: Let ) = r. Then O = r,, and 8 2 = r2. Com-
R = 81. bining this with Eq. (5). we have F = (F-1)' which implies

Both 8 and r are full rank, and so the rank of R is equal F is unitary. [Q
to the model order p, which is twice the number of The Toeplitz approximation method (TAM) of [7. 5]
sinusoids [5]. Observe that the i" row of 9 is hF - , and exploits these facts to reliably estimate the sinusoid fre-
the i"i column of F is F-'+Ph ' , so that F may be obtained quencies from inexact covariances. Inexactness can be
by solving the overdetermined system of equations caused in practice, by a number of factors, additive noise

0 1F = 82 (3) in the data, errors in estimating the covariances. finite pre-
cision errors, and others. At first. TAM performs an SVD

where 8 1 (9 Z) is obtained from 8 by deleting the last of R, and retains the p principal components (i.e., the p
(first) row, or by solving largest singular values and the corresponding singular vec-

F-1 = r2. (4) tors). SVD is preferred to eigendecomposition because in
the presence of perturbations, R may not be non-negative

where r1 and r 2 are defined in a manner similar to 01 and definite. Let the singular vectors and singular values after
82 respectively, the low-rank approximation be UX:. and V. Next, TAM

picks e = UE"', and looks for an approximate solution to
3. ORIGINAL TAM Eq. (3). The approximation criterion used is least-squares,

The above discussion indicates how the sinusoid fre- and the TAM estimate is
quencies may be obtained from covariance data, when the 1 AM = ' 2 ,  (6)
information is exact. Let the singular value decomposition
(SVD) of the Toeplitz matrix R (which is also the eigen- where the superscript t denotes the pseudo-inverse. The
decomposition when the covariances are exact) be sinusoid frequency estimates are then, the angles of the
R=UEV', where E contains only the non-zero singular eigenvalues of FtAM .

values. Hence, the dimensions of diagonal matrix E will Theorem I indicates that in the noiseless situation,
equal the rank of R, which is also the order of the model p. 1 AM's choice of factor E as LIE' will make the F-matrix
Different factorizations unitary. In the low SNR case as well, i' there is an exact

8 = Uz1', r- -IrV' solution to Lq. (3), (which is the case when no low-rank
approximation is imade, R is non-negative definite and

of the T'oceplitz matrix are possible, and each will lead to a exactly equal to UEV', for instance) then the solution will
233des c
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be unitary. But whenever a principal-components approx- 5. SIMULATIONS
imation is made and there is no exact solulion to liq. (3). Our simulations have shown noticeable improvement
the least-squares solution FTAM will generically not he in TAM's performance when exact covariances are avail-
unitary, able; but negligible improvement when covariances have to

be estimated from low SNR data.
4. IMP'ROVEi) TrAM

The modification proposed in this section is the inclu- Example 1. In the first example, it is assumed that
sion of the unitary constraint on F in the least-squares exact covariances are available, corresponding to a single
solution of Eq. (3). Such a constrained least-squares sinusoid in an additive AR( 1) process.
problem also arises In motion estimation and a simple r(m)= cos(27rfm)+ p(0.5)
analytical solution was derived in [81. We include the
problem and the solution here, but refer the reader to [8] The improved TAM and the original TAM were used on
for the derivation of the algorithm. covariances r(0) ... , r(12); corresponding to different
Problem: Given two real-valued n by p matrices () and values of the sinusoid frequency f. The Toeplitz matrix
e2. n>p. find p by p matrix F that minimizes used was of size 13 x 13. and a rank-2 approximation was

empl,)yed in each algorithm. The simulations were per-
Trace (8 1F - 8 2)t(8 1F - e2) • formed in double precision on a VAX 780 using FORIRAN

77. The IMSL routines LSVDF, and EIGRF were used in
subject to the constraint that F be unitary. the programs.
,Solution; CdulatL the p by p niduix Table I gives the results for SNR 10 dB (p = 0.1).

H = E-- @E. Our results indicate that TAM fails to delt the sinusoid

Let the SVD of H be UHEHVi', where Eli includes all p at frequencies around 10 - 3 (i.e.. both eigenvalues were
singular values, even if they are zero. Then the solution to real), and the improved TAM is able to resolve the two
the constrained least-squares problem is complex exponentials at much smaller frequencies. but

appears to make large errors in the frequency estimate.

Table II gives the results for low SNR for a fixed fre-
We propose the use of this solution in place of Eq. (6) quency f=0.2. Both methods appear to fail at the saiie

to guarantee that the estimated F-matrix is unitary and SNR in this simulation.
consequently does have eigenvalues on the unit circle. To
reduce the effects of noise on the estimate of F. TAM's L.xample 2. In this example. data corresponding to two
choice of E is also slightly modified as follows. The com- equi-amplitude real sinusoids in additive white noise was
plete algorithm is used as the starting point for the estimation schemes.

y(n)= Acos(27rfln)+ Acos(2frf,n+O)+ w(n),
Improved TAM algorithm: where 0 is a random variable uniformly distributed over
I. Compute the SVD of R (-ir,+VJ. and w(n) is /ero-mean Gaussian white noise.

r UkOkV '  independent of ). Only 48 consecutive observations from

k=I a single sample sequence are given; and the covariance lags
where the rank r is at least as large as p. and the singular have to be estimated by temporal averaging over th inle
values are numbered in order of decreasing magnitude. record. For the experimcnt. IMSI, routines ;tl, and
Then, denote GGNML were used to generate (h and w(n) respectively.

The original TAM as well as the improved TAM were both
U= ut up U. 1= diag(ok -op.,k=I ..... p): employed to estimate the sinusoid frequencies from

n cunbiased covariance estimates, using rank-2 approxima-and choose tions. The experiment was repeated 50 times using

E =UE" independent realizations of b and w(n). and the arithmetic
mean and standard deviation was computed for the 50

2. Lei the SVD of H = E b,- U11E1 , where 1, estimates of each frequency. The simulations were per-
2o. formed in single precision on a bO-bil CYBER 175 using

includes all p singular values. [lien the new estiuihai oi FORTRAN 77.
the stale-feedback matrix is

Table Ill gives the results for SNR 10 dB. f1 = 0.125.
Iunilars = VIUI" f2 = 0.135, and matrix siwe 32 by 32. Table IV gives the

A heuristic reasoning for subtracting the (p+I )-III results for SNR 3 dB. f, = 0.125, fz = 0.145, and matrix
singular value in the construclion of 0- is the following. size 24 by 24. The results seem to indicate that an)When there is addicive white noise in the data an .the improvement over the original TAM is marginal in this
covarances ard exact, all sngislar vai es o R t example. A possible explanation is that TAM has achieved

translated up by the noise variance, but the singular vec- (or is very (lose to) the Crarner-Rao lower bound and (an-

tors are not effected. So, if @ Is constructed from the p not be further improved. Another possibility is thai thc
principal components, then, Eq. (3) will have an exact state-feedback matrix estimated by the the original TAM
solution. But if op+I Is not subtracted off, the solution is already close to unitary, even before imposing the con-
will not be unitary. straint. Both possibilities are the subject of current inves-

tigation.
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• II

True f 0.20000 0.02000 0.00200 0.00100 0.00050 0.00020
Original TAM 0.19979 0.02004 0.00184 0.00000 0.00000 0.00000
Imp roved TAM 0.19980 0.01988 0.00206 0.00158 0.00146 0.00143

Table I (SNR - 10 dB)

SNR 10 dB 0 dB -2 dB -4 dB -5 dB
Original TAM estimate 0.19979 0.19767 0.19583 0.18968 0.16661
Improved TAM estimate 0.19980 0.19781 0.19607 0.19000 0.16362

Table 11 (f -0.2)

Mean 0.12848 0.13761 Mean 0.12713 0.16271__r___._TAM "_____Or_____ 2  .. c. .4TAM~ .4
O rig. TAM Std. dev. 3.94 x 10 -

7 5.35 x 1-6 Orig. TAM Std. dev. 4.34 x 10 -  
7.42 x 0 -

3

Mean 0.12854 0.13743 Mean 0.12439 0.15275
Impr. TAM Impr. TAM I

Std. dev. 3.83 x 10 - ' 5.21 . 10- Std. dev. 3.64 x 10
- 4  3.71 x I

Table III (fl=0.125. f 2=0.135) Table IV (f 1 =0.125. f2=0.145)
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